Crystals, regularisation and the Mullineux map

نویسندگان

چکیده

The Mullineux map is a combinatorial function on partitions which describes the effect of tensoring simple module for symmetric group in characteristic $p$ with one-dimensional sign representation. It can also be interpreted as signed isomorphism between crystal graphs $\widehat{\mathfrak{sl}}\_p$. We give new description by expressing this composition isomorphisms different crystals. These are defined terms generalised regularisation maps introduced Millan Berdasco. then given two applications our realisation map, providing purely proofs conjecture Lyle relating regularisation, and theorem Paget describing RoCK blocks groups.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularisation and the Mullineux Map

We classify the pairs of conjugate partitions whose regularisations are images of each other under the Mullineux map. This classification proves a conjecture of Lyle, answering a question of Bessenrodt, Olsson and Xu.

متن کامل

General runner removal and the Mullineux map Matthew Fayers

We prove a new ‘runner removal theorem’ for q-decomposition numbers of the level 1 Fock space of typeA (1) e−1 , generalising earlier theorems of James–Mathas and the author. By combining this with another theorem relating to the Mullineux map, we show that the problem of finding all q-decomposition numbers indexed by partitions of a given weight is a finite computation.

متن کامل

On Residue Symbols and the Mullineux Conjecture

This paper is concerned with properties of the Mullineux map, which plays a rôle in p-modular representation theory of symmetric groups. We introduce the residue symbol for a p-regular partitions, a variation of the Mullineux symbol, which makes the detection and removal of good nodes (as introduced by Kleshchev) in the partition easy to describe. Applications of this idea include a short proof...

متن کامل

A Proof of the Mullineux Conjecture

A partition λ of a positive integer n is a sequence λ1 λ2 λm 0 of integers such that ∑λi n. For a positive integer p, a partition λ λ1 λ2 λm (or its Young diagram) is called p-regular if it does not have p or more equal parts, i.e. if there does not exist t m p 1 with λt λt 1 λt p 1. Let F be a field of characteristic p 0. It is well known that irreducible representations of the symmetric group...

متن کامل

Mullineux involution and twisted affine Lie algebras

We use Naito-Sagaki’s work [S. Naito & D. Sagaki, J. Algebra 245 (2001) 395–412, J. Algebra 251 (2002) 461–474] on LakshmibaiSeshadri paths fixed by diagram automorphisms to study the partitions fixed by Mullineux involution. We characterize the set of Mullineux-fixed partitions in terms of crystal graph of basic representations of twisted affine Lie algebras of type A (2) 2l and of type D (2) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of combinatorial algebra

سال: 2022

ISSN: ['2415-6302', '2415-6310']

DOI: https://doi.org/10.4171/jca/59